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Motion of a spherical particle in a rarefied gas. 
Part 2. Drag and thermal polarization 

By S. A. BERESNEV, V. G. CHERNYAK AND G. A. FOMYAGIN 
Urals State University, Sverdlovsk, 620083, USSR 

(Received 3 July 1989 and in revised form 23 March 1990) 

Kinetic theory for the drag and thermal polarization of a spherical particle in a low- 
speed flow of a rarefied gas is presented. The problem is solved on the basis of the 
linearized kinetic equation (Shakhov 1974) with the correct Prandtl number, Pr = 
5, for monatomic gas. The integral-moment method of solution for arbitrary values 
of the Knudsen number is employed. The possibility of arbitrary energy, and 
tangential and normal momentum accommodation of gas molecules on the particle 
surface is taken into account in the boundary condition. The particle-gas heat 
conductivity ratio A is assumed to be arbitrary. 

Numerical results for the isothermal drag, radiometric force affecting a non- 
uniformly heated particle in a rarefied gas, and temperature drop between the ends 
of the particle diameter owing to its thermal polarization in a gas flow have been 
obtained. The analytical expressions approximating the numerical calculations for 
the whole range of Knudsen numbers are given. The results obtained are compared 
to the available theoretical and experimental data. 

1. Introduction 
The problem of a low-speed rarefied gas flow past a spherical particle has received 

considerable attention in the general investigations of aerosol mechanics (Brock 
1980). However, the gas and particle temperatures were traditionally assumed to be 
equal, since the particle heating in the retarding gas flow is proportional to the square 
of the Mach number (Landau & Lifshitz 1966) and for a subsonic flow it  is negligible. 
In  particular Cercignani & Pagani (1968), Cercignani, Pagani & Bassanini (1968) and 
Lea & Loyalka (1982) calculated the isothermal drag at small values of the Mach 
number ( M )  and arbitrary Knudsen numbers (Kn) on the basis of the linearized 
Bhatnagar, Gross & Krook (1954) kinetic equation with the boundary condition of 
diffuse molecular scattering by the particle surface. 

Derjaguin & Bakanov (1962) have theoretically predicted the effect of particle 
‘thermal polarization ’ in a low-speed rarefied gas flow, consisting of the non-uniform 
temperature distribution on the particle surface. I ts  mean temperature there remains 
equal to the free-stream gas flow temperature. This linearity in M was found to be 
determined by the isothermal heat transfer in a moving gas (Prigogine 1955) and 
unrelated to the energy dissipation in the retarding gas flow near the particle. Later, 
a particle thermal-polarization theory a t  Kn 6 1, based on solving the Stokes- 
Fourier equations taking into account the Knudsen layer near the particle surface 
and employing the methods of irreversible thermodynamics, was developed by 
Bakanov, Derjaguin & Roldughin (1979), Bakanov et al. (1983) and Roldughin 
(1987). Sone & Aoki (1977) and Vestner & Waldmann (1977) have also taken into 
account the particle thermal-polarization effect in calculating the drag a t  K n  $ 1.  
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Experimental investigations of the particle thermal polarization were conducted by 
Bakanov & Vysotsky (1980), Bakanov et al. (1983) and Bakanov, Vysotsky & 
Nekrasov (1986). 

Besides the temperature non-uniformity of the particle surface, the temperature 
non-uniformity of the surrounding gas must also be taken into account. This effect 
may by analogy be defined as the ‘surrounding gas thermal polarization’. It was 
considered by Law & Loyalka (1986) a t  arbitrary Knudsen numbers and by Aoki & 
Sone (1987) at Kn Q 1 and Kn -+ 00. The problem was solved on the basis of the model 
kinetic equation of Bhatnagar et at. (1954) but not using the correct Prandtl number 
for monatomic gases, and ignoring the particle thermal-polarization effect, which is 
only valid for cases of complete particle heat conductivity. 

The purpose of this work is the elaboration of a consistent kinetic theory for the 
drag of a spherical particle with non-uniform surface temperature and the particle 
thermal-polarization effect at  arbitrary Kn. The problem is solved on the basis of an 
approximate kinetic equation (Shakhov 1974), allowing the correct description of the 
combined processes of heat and momentum transfer in gases, which is the necessary 
condition for the problem solution. The analysis of the particle thermal-polarization 
value and also the isothermal and radiometric components of the dependence of the 
drag on the accommodation and thermophysical properties of the particle at various 
Knudsen numbers seem also to be of considerable interest. 

2. The problem 
Consider a monatomic rarefied gas flow past a spherical particle of radius R, a t  

M Q 1. The undisturbed values of the gas flow velocity, number density and 
temperature far from the particle are Urn, n,  and T, respectively. If the origin of the 
coordinates is assumed to be at the particle centre, then with the approximation of 
linearity in M the molecules’ velocity distribution function can be written as 

f(x, v) =fm[1+2c*um+h(x, v ) ] ,  (1) 

where f, = n,(--)lexp(-c2), r n r  c = v ( L r ,  u, = Urn(&-, 27ckT, 2kT, 

x is the radius vector from the particle centre, u is the molecular velocity vector, h 
is the distribution function disturbance due to the particle presence. 

Let the particle surface temperature be slightly different from the free-stream gas 
flow temperature T,, i.e. 

W O O )  = T,[1+TS(O0)1, bS1 Q 1, ( 2 )  

where O0 is the polar angle on the particle surface (the problem’s geometry is given 
in figure 1 of Beresnev, Chernyak & Suetin 1987). Let us consider the effect of the 
surface temperature non-uniformity on the drag without discussing as yet the 
physical causes for the difference between the temperatures T,  and T,. 

The distribution function disturbance in ( l ) ,  h, satisfies the linearized kinetic 
equation (Shakhov 1974) which may be written here as 

ah P, 
t r -  = - [V + 2 ~ -  W + ( c2 - ~) + &(c2 - %) c * S - h],  

ax T 
(3) 

where P, = n, kT,, 7 is the gas viscosity at temperature T,. 
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The dimensionless quantities v, W, r and S characterize respectively the gas 
density, its macroscopic velocity and temperature disturbances and the dim- 
ensionless heat flow : 

V 

W 

r 

S 

n-n, 

n, 

u-u, 

T-T, 
T W 

4 

1 

C 

i ( C 2 - g )  

c( C 2  - $) 

h exp ( - c2 )  dc, (4) 

where q is the heat flow in the gas due to the particle surface, T,, and gas, T,, 
temperature difference (non-isothermal heat transfer) and also due to the gas motion 
(isothermal heat transfer). 

The solution (3) requires the introduction of it boundary condition taking into 
account discontinuity in the character of the molecular velocity space of the 
distribution function. For the molecules incident on the particle surface we admit the 
possibility of the arbitrary normal and tangential momentum and energy 
accommodation. To take this possibility into account the reflected molecules 
distribution function disturbance (I) is approximated by an expansion in terms of 
Hermite polynomials in the velocity half-space (n. u )  > 0 (Shen 1967) : 

h+ = ao+a,,cr+a,,c,+a2(c2-~)+ ... . ( 5 )  

The unknown expansion coefficients ai, which depend on the polar angle do, are 
derived in terms of Knudsen accommodation coefficients from the laws of 
conservation of total flow number N, tangential (Pro) and normal (Pr,) momentum ; 
and energy (E,) radial flows on the particle surface (Kogan 1969) : 

Here the superscripts + and - respectively refer to quantities determined by the 
reflected and incident molecules; the s superscript refers to flows in the case of 
complete accommodation on the surface. 

The force affecting the particle is determined from 

where n, is the unit vector along the direction U, ; integration is carried out over the 
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whole sphere surface S. Equation (7) is equivalent to the drag definition usually 
accepted in fluid mechanics (Batchelor 1967). 

3. Integral moment equations 
Kinetic equation (3) with the boundary condition (5) is formally integrated along 

the characteristics (Marchuk 1961) and according to  (4) is transformed into a set of 
integral equations for the macroparameter v, W, 7 and S disturbances : 

v = n-ivO+n-q-"[vJ,t2( W.f2)J2+7(J3-$4) 

dr' 
Ir - r'I2 ' 

+ A( s - 52) ( J4 - $ 4 1  ~ 

Here 

dr' 
1r-r'I2' 

+ 7(J5 - 3J3 + 43,) + &(S* 0)  (4 - 4J4 + $4)] ~ 

[v(Jp-%J2)+2(  W.52) (J5-$J3) 

J,(t) = lom cn exp (- c2 -a) dc 

is the Abramowitz (1953) function; 52 = r-r'/lr-r'l = c/lcl; the integration in (8) is 
carried out over the volume 8, the points of which can be reached from point r 
without intersecting the sphere; and the argument of the integrals J, is lr-r'l. The 
dimensionless radius vector r from the centre of the particle is determined from the 
radius vector x as 

and the dimensionless particle radius R 1 Ir,l = $niKn-l, where the Knudsen number 
Kn = l /Ro. The mean free path of the molecules 1 is related to  the gas viscosity 
coefficient 17 by 
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The expressions for the absolute terms in (8) have the following form : 

[a,J2+AJ3+a2(J4-$J,)]do, 
= s,, 

409 

WO = [aoJ3+AJ4+a2(J,-gJ3)152,do, s, 
70 = Iuo [ao( J4 - $4) + A  ( J5 - $I3) + a2( J6 - 3 4  + 44)] do ,  

So = [a,(J, - !J3) + A  (J, - $4) + a2(J, - 4J5 + yJ3)]  52, do ,  

where f2, = r-r,/Ir-rl; ro is the radius vector on the sphere surface; 

A = Ai,(a,' n) + a,,(ao ' 7 )  - 2(1(20 ' urn) ; 

n and 7 are the normal and tangent unit vectors to the sphere surface at the point 
r,; oo is the solid angle under which the sphere is seen from the point r ;  and the 
argument of the J, is lr-rol. 

The set of integral equations (8), (9) containing the unknown quantities a,, a,,, al,, 
a2 is completed by (6) transformed into the following integral form: 

$quo + $Thin + $x2 + 7dUm cos O,] 

I 1 -1 1 p h[pl, + (1 -a,) u, sin So] 

1 $d[aln  + +7&( 1 - a,) (a, + a2 + 4.IC-bm cos O,)] 

I d{( 1 - aE) [a, + $x2 + ~n;(al, + 2u, cos B,)]  + a2 - OIE 7,) 

(10) 

The integration in (10) is carried out over half-space V above the plane tangent to the 
sphere at  point ro ; the argument of J, is Ir - r,l ; 

a,, = (0,-n), a,, = (52,-7). 

The last expression in (10) contains the particle surface temperature disturbance 
7,, which may be written here as 7,(00) = 7s09(00), where T,, is no longer determined 
by angle 6,. It follows from the linearity of the theory that the distribution function 
disturbance and hence any macroparameter r including gas-surface interaction 
parameters from ( 5 )  may be written in the form 

(11) r = ruu, + 13~7,~. 
Substituting (11) into (8)-(10) and extracting terms proportional to u, and 7,, splits 
the original equations (8)-(10) into two sets. The first describes the flow past a 
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particle with uniform surface temperature equal to the free-stream gas flow 
temperature T,, and the second one describes the gas flow due to the surface 
temperature non-uniformity. Thus the original problem can be split. First the force 
F, acting on the particle with the uniform surface temperature T, in the moving gas 
should be determined taking into account the surrounding-gas thermal-polarization 
effect. The second problem is to  estimate the radiometric force FT acting on the non- 
uniformly heated particle is a motionless (u, = 0) gas. 

4. Method of solution 

Let us expand i t  using the Legendre polynomials 
The values of the radiometric force FT is dependent upon the v(8,) function form. 

Here it is convenient to  choose T,, so that 6 ,  = 1. Then the macroparameters’ angular 
dependence in the second problem (the quantities with the T superscripts) is also 
given in an expansion form analogous to (12). Owing to the Legendre polynomials’ 
orthogonality, FT is fully determined by the term in (12) with I = 1, for in the force 
definition (7) V ,  = ~ c o s ~ , - ~ s i n B , .  Hence for both problems we may write 

where i = U,  T .  Here pj ( r )  are the radial coordinate r functions, and cj  are the 
unknown constants independent of the 0, angle. 

Both sets of integral-moment equations that the functions pj satisfy are solved on 
the basis of the BubnovGalerkin method (Mikhlin 1970). The trial functions for the 
macroparameters are chosen according to the form of the hydrodynamic solution so 
as to ensure the quick convergence of the method a t  arbitrary K n :  

. R2 
ca - 

r2 

-;[si,-c:(l--J R R2 

2 r  

R2 
ci - 

r2 

. R3 
cz - * r3 

R3 Lc, - 
2 8 r3 

[ s,, - c: (1 + 31 

1, i = u  
0, i = T  

i = U , T ;  Si ,  = { 
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The unknown constants cj  are determined by substituting (13), (14) into the set of 
integral-moment equations (8)-( 10) ; the expressions derived should be orthogonal 
with respect to each of the basic functions in (13), (14). 

5. The particle surface-temperature determination 
When the particle surface-temperature non-uniformity is due only to the particle 

thermal polarization in a gas flow and does not result from any inner heat source 
within the particle volume, the parameter 7, in (2) is obtainable from a 
thermophysical problem solution. The temperature distribution over the particle 
volume is in this case described by the steady Laplace equation 

V2TP(X, 0,) = 0. (15) 

The requirement of temperature limitation at  the particle centre T,(z = 0 )  < co and 
radial heat flow continuity at  any point on the particle surface, where A, is the 
particle heat conductivity coefficient, are taken as the boundary conditions to (15) : 

(16) 
2kT, 

- A  !% I = P, ( 7 r n - ; J c , . ( c 2  -5) h(R,, c )  exp ( -c2) dc. 
ax X-R, 

Analysis of the boundary problem (15), (16) shows that the ~ ( 0 , )  function in (12) 
in this case equals cos 0,, i.e. the expressions (13) for i = U provide the exact angular 
macroparameter dependence in gas. 

The temperature drop between the ends of the particle diameter parallel to U,, 
with regard to the laws of conservation of mass and energy (6), is determined by 

where A = AJA,; A, is the heat conductivity of gas. 

6. Discussion of results 
In limiting cases of a viscous slip-flow (Kn < 1) and free-molecular (Kn+ 00) 

regimes the analytical expressions for F,, FT and AT can be obtained by the 
asymptotic expansion of the Galerkin coefficients, which are not given here because 
of their cumbersome nature. Numerical calculations were carried out at intermediate 
Kn and various aE, a,, a,, and A values. The computational error is within 1 % a t  all 
values of the variable parameter. The maximum error of the accepted approximation 
for the Bubnov-Galerkin method (13), (14) is estimated to be 3 %. The F,, FT and AT 
dependence on the parameters aE, a,, a, and A is obtained here in an analytical form ; 
their dependence on Kn for corresponding functions is given in tabular f0rm.i 

6.1. Isothermal drag F, 
In a free-molecular regime (Kn+ 00) the isothermal drag is 

t The tables for the dependence of F,, F, and A T  on Kn are not included in the present paper. 
Copies may be obtained by writing to the Editor of the Joumzal of Fluid Mechanics or to the 
authors. 

14 FLY 219 
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In the case of complete momentum and energy accommodation (a, = a, = aE = 1) 
this expression becomes the well-known Epstein (1924) result. 

In a viscous slip-flow regime (Kn < 1) the expression for Fu is 

Fu = 67c7U, R,[ 1 + aKn + bKn2 + O(Kn3)], (19a) 

where a and b are numerical coefficients dependent on the accommodation 
coefficients. Within the computational accuracy a depends only on a, and is 
independent of a, and aE. In  the case of complete accommodation a = - 1.137; 
b = 0.5650. Analogous coefficients given by Sone & Aoki (1977) after suitable Kn 
transformations are a = - 1.147 and b = 0.6366. This slight difference in a and b 
values results first from the fact that different kinetic equations were employed (the 
BGK equation by Sone & Aoki (1977) and Shakov equation in our work) and from 
different methods of solution. In  the case Kn < 1 and a,+O the numerical result 
confirmed the validity of the well-known Basset (1961) result 

Fu = 4 ~ q U ,  R,. (196) 

At intermediate Kn the formula for the isothermal drag is written as 

Fb + (1 - aE)  FL 
F3, + (1  -aE)F4, ’ 

F: = 

where F: = FU/FEM(a, = a, = aE = l ) ,  

where a t  n = 1, i  = 1, ..., 4;  a t  n = 2, i  = 5, ..., 8 ;  a t  n = 3, i  = 9, ..., 1 1 ;  and a t  n = 4, 
i = 12, . . . ,15. Functions fu depend only on Kn and are presented in tables A I ,  A 2 
(see footnote on p. 411). 

At a, = a, = aE = 1, from (20) it follows that FC = f;; for F$ an approximate 
expression was obtained which agrees with the numerical calculations over the whole 
range of Kn within an error of 1 % : 

0.310Kn 
+Kn2 + 1.152Kn + 0.785 

F:(a, = a, = aE = 1) = 

Comparison of the results obtained for cases of complete accommodation with 
other theories and the empirical Millikan (1923) formula is given in table 1. The two 
right-hand columns of table 1 provide the results of the numerical calculations of F: 
(20) (Shakhov’s 1974 equation taking into account the surrounding-gas thermal 
polarization) and the results of our previous paper (Beresnev et al. 1987, using the 
BGK (1954) equation without the surrounding-gas thermal polarization). The 
maximum discrepancy between these results does not exceed 0.2% over the whole 
range of Kn. This fact allows us to ignore the gas thermal-polarization effect on the 
isothermal drag. At the same time the difference between our present results (20) and 
the results of Law & Loyalka (1986) where the BGK equation was used and the 
thermal polarization of the gas was also taken into consideration, amounts to 6 % a t  
Kn x 0.1 We believe that such a discrepancy may be explained by the fact that the 
use of the BGK-model equation for computations of the gas thermal polarization 
near the particle is hardly justified, for it does not provide a correct description of the 
combined processes of heat and momentum transfer. The fact that the agreement 
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FIQURE 1. The accommodation dependence of the reduced isothermal drag F t  (equation (20)) 
at various Kn = ~ I C ~ R - ~ .  

Millikan 
R (1923) 

0.050 0.978 
0.075 0.968 
0.10 0.957 
0.25 0.896 
0.50 0.804 
0.75 0.724 
1 .oo 0.655 
1.25 0.596 
1.50 0.546 
1.75 0.502 
2.0 0.465 
2.5 0.403 
3.0 0.355 
4.0 0.286 
5.0 0.240 
6.0 0.206 
7.0 0.180 
8.0 0.161 
9.0 0.145 

10.0 0.132 

Cercignani Lea & 
et al. 

( 1968) 

0.978 
0.965 
0.953 
0.886 
0.790 
0.709 
0.640 
0.582 
0.533 
0.491 
0.455 
0.395 
0.349 
0.282 
0.236 
0.203 
0.178 
0.158 
0.143 
0.130 

Loyalka 
(1982) 

0.982 
0.966 
0.948 
0.887 
0.790 
0.709 
0.640 
0.583 
0.520 
0.492 
0.456 
0.397 
0.342 
0.284 
0.238 
0.205 
0.180 
0.160 
0.144 
0.131 

Law & 
Loyalka 
(1986) 

0.977 
0.966 
0.955 
0.891 
0.801 
0.727 
0.651 
0.597 
0.551 
0.512 
0.478 
0.423 
0.352 
0.287 
0.243 
0.212 
0.182 
0.164 
0.150 
0.134 

Sone & Beresnev 
Aoki 
(1977) 

__ 
- 

- 

- 
- 

- 

0.692 
0.581 
0.534 
0.477 
0.442 
0.386 
0.351 
0.278 
0.234 
0.202 
0.177 
0.158 
0.142 
0.129 

Equation Equation 

0.983 0.988 
0.982 0.979 
0.964 0.970 
0.905 0.908 
0.810 0.806 
0.724 0.720 
0.651 0.645 
0.590 0.588 
0.538 0.537 
0.494 0.493 
0.456 0.456 
0.395 0.396 
0.348 0.349 
0.280 0.282 
0.235 0.236 
0.202 0.203 
0.177 0.178 
0.158 0.158 
0.142 0.143 
0.129 0.130 

(21) (20) 
et al. 

(1987) 

0.988 
0.979 
0.969 
0.906 
0.806 
0.720 
0.648 
0.588 
0.538 
0.494 
0.457 
0.397 
0.350 
0.282 
0.236 
0.203 
0.178 
0.158 
0.143 
0.130 

TABLE 1. Reduced to the free-molecular value isothermal drag F t  at a, = a, = aE = 1 as a 
function of inverse Knudsen number Kn, R = +dKn-l 

between our present results (20) and Lea & Loyalka's (1982) results (the BGK 
equation without including the thermal polarization of the gas) at K n  x 0.1 is within 
1 % also seems to support our reasoning. 

In figure 1 the accommodation dependence of the reduced isothermal force FE at 
various K n  is shown. The decreasing of the tangential momentum accommodation 
coefficient a, results in the decrease of tangential stresses on the particle surface, i.e. 

14-2 



414 8. A .  Beresneu, V.  G .  Chernyak and G .  A .  Fomyagin 

in the reduction of the isothermal drag. The decrease in the normal momentum 
accommodation coefficient a, leads to the growth of the angular non-uniformity of 
the normal stresses. This may be shown from the laws of conservation of the normal 
momentum on the particle surface (6 ) .  As a result the FF force grows. The 
F t  dependence on a, is a maximum in a free-molecular regime and is absent a t  
K n 4  1. 

The F*, dependence on the energy accommodation coefficient aE is a result of the 
thermal polarization of gas flow past a particle with a uniform surface temperature. 
For an incomplete energy accommodation (aE < 1 )  the surrounding-gas thermal 
polarization increases. It leads to the redistribution of the normal stresses on the 
particle surface, which increases their angular non-uniformity. As a result the 
isothermal drag F: increases. The FC dependence on aE is a maximum in a free- 
molecular regime, decreases in the intermediate and is absent in a viscous slip-flow 
regime. 

6.2. Radiometric force FT 
I n  a free-molecular regime the radiometric force is due to  the Knudsen mechanism : 
momentum transfer is on average greater for molecules reflected from the heated 
part of the particle surface than for those reflected from the cool part. The total 
uncompensated momentum gives a radiometric force in the direction of the ‘cool’ 
side of the particle. The expression for FT as K n  + CD is 

F F M  = 32d2p an 
32 - X( 1 -an) (9 - aE)  “O‘ 

T 3 O m  

At Kn 4 1 the radiometric force is due to  the thermal creep flow along the non- 
uniformly heated particle surface. The use of the Stokes-Fourier equation with the 
boundary conditions of thermal creep flow and a temperature jump on the particle 
surface gives the following expression for the radiometric force a t  Kn 4 1 : 

?12 KTS FT = 4 ~ -  
p ( 1  + 3Cm Kn) (1 + 2C, Kn) 7s0‘ 

Here KrS, Cm and C, are respectively the thermal, isothermal creep flow and 
temperature jump coefficients; p is the mass gas density. 

At intermediate Kn the reduced radiometric force value F$ = FT/FFM(a, = a, = 
aE = 1) was numerically calculated as a function of Kn and the accommodation 
coefficients. The F$ formula is of the following form: 

F$ = 
F$ + (1 -aE) F$ ’ 124) 

where F’T = f i  + ( - aT I f ;  + ( - a,)f $ + ( - a,) ( - a n ) f k ,  

Fg = F3,, F$ = F4,, 

from (20). Functions fk, i = 1, . . ., 4 depend only on K n  and are given in table A 2 (see 
footnote on p. 411). At Kn 4 1 for the case a, = a, = aE = 1 the analytical 
expression for F$ is derived by the asymptotic expansion of Galerkin coefficients 
from (24) 

It should be noted that a t  Kn 4 1 the leading term F$ - Kn2, while the leading term 
FC - Kn. 

F$ = 8.594Kn2 - 16.341Kn3 + 0(Kn4) .  (25) 
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FIGURE 2. The accommodation dependence of the reduced radiometric force F: (equation (24)) 
at various K B  = ~ Z ~ R - I .  

At a, = a,, = 1 we obtain from (24) an expression for F$ that approximates the 
numerical calculation to within an error of 5 %  a t  all values of Kn and aE:  

Kn+0.129 Kn2 Kn2 -0.222Kn+ 0.131 
" = aEKn+0.129aE Kn2 +0.116 Kn2 +0.015Kn+0.131' 

The accommodation dependence of F$ at various Kn is shown in figure 2. Owing 
to the incomplete molecular energy accommodation the gas is less susceptible to the 
particle surface-temperature non-uniformity. As a result the total uncompensated 
momentum transfer by gas molecules to the particle and the thermal creep flow along 
the non-uniformly heated surface decrease. The F$ value is maximum a t  aE = 1 and 
equals zero a t  aE = 0 a t  all Kn values. 

Given the incomplete normal momentum accommodation the F$ value also 
decreases over the whole range of Kn. 

The F$ dependence on a, is of some interest. With a decrease in a, the F $  value 
increases in the viscous slip-flow and intermediate regimes, and in the free-molecular 
regime it is independent of a,. The reason is that the normal and tangential stresses 
contribute to the radiometric force with opposite signs. The F$ value is mainly 
determined by the normal stresses, while the tangential stresses contribute to its 
decrease. The a, decrease results in a smaller tangential stress contribution, and 
hence to the radiometric force increase. At Kn w 1 the tangential stresses are already 
small, and as Kn+ MI they are totally absent. That is why a t  Kn > 1 the F$ 
dependence on a, is rather weak. 

Schmitt (1961) has experimentally investigated the radiometric force affecting a 
macroscopic sphere over a wide range of gas pressures. During these experiments the 
temperature drop between the ends of the particle diameter was created by means 
of lighting one side of the particle, and it was kept constant a t  various gas pressures. 
The measurements were carried out in the range of 0.01 ;5 Kn ;5 10. Such 
experimental conditions ( T , ~  = const a t  all Kn) allow a direct comparison of the 
theoretical data (24) with the experiment. In  spite of the fact that in the experiment 
polyatomic gases were used (N2, CO, etc.), the comparison has demonstrated a 
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satisfactory qualitative agreement with the theory over the whole range of Kn values 
investigated. Given the complete momentum and energy accommodation the 
discrepancy does not exceed 15%. We are not aware of any other experimental 
.results comparable with the theoretical data without the constant rs0 value. 

6.3. The resulting force acting on the $xed particle 

The resulting force is determined by the relation 

F = F"u, + F r S 0 .  (27) 

The direction is uniquely specified by the free-stream flow velocity vector U,, and 
the F direction is determined by the concrete temperature distribution on the 
particle surface. The radiometric force F is always directed from the hot to  the cool 
side of the particle. Let us consider the case when the Fu and F vectors are 
oppositely directed. Then the criterion determining the magnitude and sign of the 
resulting force F can be obtained as 

F U  
7i0 = P U , .  

In  the case 7,0 < rzo the F value is positive and its direction coincides with the U,  
direction. When 7,0 = ri0 F is zero, i.e. the isothermal drag is compensated by the 
oppositely directed radiometric force. And a t  rs0 > rzo the F force is negative, i.e. it 
is directed towards the gas flow. 

6.4. Particle thermal polarization in a gas flow 
In a free-molecular regime the temperature drop value AT between the ends of the 
particle diameter parallel to U, is 

1 ' .  (29) 
16zkxE a, T, u, 32 - 9z (  1 -an) 

A T =  
3 2 - n ( l - a n )  @-aE)  32--~c(l -a,) ( 9 - a E )  

Through the asymptotic expansion of the Galerkin coefficients a t  Kn 4 1 ,  in the 
case a,, = a7 = aE = 1 we obtain the following expression for AT:  

1 + 3.029Kn+ 7.115Kn2 
2 + A (  1 + 4.931Kn + 10.670Kn2) ' 

AT = 2.O31Tw u, K n  

In the leading K n  term, (30) is in complete qualitative agreement with the analogous 
expression from Bakanov et al. (1979). The discrepancy between the numerical 
coefficients of (30)  and the expression from Sone & Aoki (1977) does not exceed 
x 2 % (2.031 and 2.076 respectively). 

At intermediate K n  the formula for the reduced temperature drop has the form 

AT - CLEF: -- 
T, u, [aE + y( 1 - aE) N i n ]  F i  + aE AJ'i ' 

where 

where m = 1 , 2 , 3 ;  i = 1 ,  ..., 1 1 .  At m = l , i  = 1 ,  ..., 4;  a t  m = 2 , i  = 5 , 6 , 7 ;  at  m = 3, 
i = 8 ,  . . . , 1 1 .  Functionsfi depend only on K n  and are given in table A 3 (see footnote 
on p. 411). 
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FIGURE 3. The accommodation dependence of the dimensionless temperature drop between the 
ends of the particle diameter AT/(T,u,) (equation (31)) at various Kn = $dR-l and A = 10. 

At a, = a, = 1 we get from (31) 

Choosing expressions for fi and fi in the form 

we get agreement for the reduced temperature drop between (32) and the numerical 
calculation over the whole range of Kn within an error of 2 % for all aE and A .  

The AT value is not a monotonic function of Kn.  It grows as Kn increases in a 
viscous slip-flow regime, reaches its maximum value in the intermediate regime and 
then falls and stays constant (at  fixed aE, a,,, A )  in the free-molecular regime. The 
position and magnitude of the AT maximum a t  intermediate Kn is determined by the 
heat conductivity parameter A and the accommodation coefficient values. 

The dependence of the reduced temperature drop on the accommodation 
coefficients values aE, a,, a7 is given in figure 3. At aE = 0 over the whole range of Kn 
the AT value equals zero, as in this case the colliding molecules do not impart their 
energy to the particle. AT reaches its maximum value a t  aE = 1. It should be noted 
that the hydrodynamical theory (Bakanov et al. 1979, 1983) does not provide the 
correct limit transition AT -+ 0 as aE -+ 0. 

The a, decrease also results in a AT decrease a t  all K n ;  however a t  a, = 0 the AT 
value equals zero only as Kn -+ 00, and in other regimes it is finite. a, growth results 
in a AT decrease in the viscous slip-flow and intermediate regimes, and as Kn -+ 00 the 
AT value is independent of a7. 
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FIQURE 4. Comparison among the numerical calculation AT* (equation (34)) and the Bakanov & 
Vysotsky (1980) Bakanov et al. (1983, 1986) experiment and the hydrodynamical theory of 
Bakanov et al. (1979, 1983). (a)  HePyrex glass ( A  = 7.5); ( b )  He-vaseline-oil-covered organic glass 
( A  = 1.26); (c) €&organic glass ( A  = 1.26). Curve 1, calculation using (34) at a,, = a, = a, = 1 : 
curve 2, calculation at a, = 1 ; a, = 0.8; a, = 0.4; curve 3, Bakanov et al. (1979, 1983) theory. 

Comparisons of our results with experiment (Bakanov & Vysotsky 1980 ; Bakanov 
et al. 1983, 1986) and hydrodynamical theory (Bakanov et al. 1979, 1983) are 
presented in figures 4 and 5. For this purpose AT is scaled as 

AT* = AT(A + 2)/(7ckn u, T,). (34) 

By substituting (31)-(33) into (34) we obtain the following expression for AT* at 
K n g l :  

(2 + A )  (1 + 3.029Kn + 7.1 15Kn2) 
2+A(1+4.931Kn+ 10.670Kn2) ' 

AT* = 1.146 (35) 

Equation (35) shows that in a viscous slip-flow regime the AT* dependence on Kn is 
in general nonlinear. As Kn + 0 AT* = 1.146 irrespective of the heat conductivity 
parameter A .  At very small Kn values there is a small section of linear AT* 
dependence on Kn; however, for low-conductivity particles ( A  5 1) the straight line 
inclination to the Kn axis tangent is positive, and for high-conductivity particles 
( A  2 100) it  is negative. With Kn growth the AT* dependence on Kn becomes non- 
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0 2 4  6 8 10 12 14 
Kn ( x  lo-*) 

FIGURE 5. As figure 4, but for (a) Ar-Pyrex glass ( A  = 62.5); (b)  Ar-organic glass with a thermally 
sprayed NaCl coating ( A  = 10.5); (c) Ar-vaseline-oil-covered organic glass ( A  = 10.5). Curve 1 ,  
calculation using (34) at a, = a, = a, = 1 ; curve 2, calculation at a, = a, = 1, a, = 0.8; curve 3, 
calculation at a, = a, = 1, a, = 0.6 for ( b ,  c);  at a,, = 1 ; a, = a, = 0.8; for ( a ) ;  curve 4, Bakanov 
et al. (1979, 1983) theory. 

linear for both low- and high-conductivity particles. For low-conductivity particles 
(He-organic glass, A = 1.26; curve 1 in figure 46, c )  at Kn x 0.04-0.06 there is a weak 
maximum of AT*. For moderate-conductivity particles (He-Pyrex glass, A = 7.5 ; 
curve 1 in figure 4a,  h-organic glass, A = 10.5, curve 1 in figure 5b, c )  at 
Kn w 0.02-0.04 there is a plateau for AT*. With a further Kn increase the AT* 
value monotonically decreases. For high-conductivity particles (Ar-Pyrex glass, 
A = 62.5, curve 1 in figure 5a)  these dependencies are less apparent. 

In  the theoretical curves for the cases of incomplete momentum and energy 
accommodation these dependencies are also less apparent, but the AT* dependence 
on K n  remains nonlinear. The experimental results seem on the whole to confirm this 
conclusion. The hydrodynamical thermal-polarization theory (Bakanov et al. 1979, 
1983), being originally linear with respect to Kn, does not agree with the results of 
this kinetic analysis. 

Comparison of the theory with experiment a t  real accommodation coefficient 
values (a, = 1 ;  aT = 0.8-1.0; aB = 0 . 4 4 . 8 )  shows satisfactory agreement. However, 
the possibility of obtaining simultaneously all the three accommodation coefficients 
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solely from the thermal-polarization experiments at K n  4 1 seems to be prob- 
lematical. 

The authors are grateful to Drs S. P. Bakanov, V. V. Vysotsky and V. I. 
Roldughin for the detailed experimental data on the thermal polarization of particles 
and for most fruitful discussions. We are also very grateful to Mrs T. V. Govorukhina 
who helped in translating this article into English. 
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